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Abstract

This paper presents the design and the implementation
of a compiler and runtime infrastructure for automatic pro-
gram distribution. We are building a research infrastructure
that enables experimentation with various program parti-
tioning and mapping strategies and the study of automatic
distribution’ s effect on resource consumption (e.g., CPU,
memory, communication). Since many optimization tech-
niques are faced with conflicting optimization targets (e.g.,
memory and communication), we believe that it is impor-
tant to be able to study their interaction.

We present a set of techniques that enable flexible re-
source modeling and program distribution. These are: de-
pendence analysis, weighted graph partitioning, code and
communication generation, and profiling. We have devel-
oped these ideas in the context of the Java language. We
present in detail the design and implementation of each of
the techniques as part of our compiler and runtime infras-
tructure. Then, we evaluate our design and present prelim-
inary experimental data for each component, as well as for
the entire system.

1. Introduction

There are important potential benefits of automatic over
manual program distribution, such as correctness, increased
productivity, adaptive execution, concurrency exploitation.
This paper describes a new approach to automatic program
distribution. In contrast with previous work, instead of con-
sidering a particular class of programs and optimization
targets, we consider general-purpose programs and study
multiple optimization targets. Our system accepts a mono-
lithic program and transforms it into multiple communicat-
ing parts in networked systems.

∗ Parts of this research were funded under ONR award N00014-01-1-
0854 and NSF award CNS-0205712.

1.1. Possible Uses

Our approach places high emphasis on the generality of
the distribution strategy and the ability to build an abstract
model of the execution environment. Then, the distribution
strategy can be specialized to concrete environments. We
recognize that this approach may not be suitable for all com-
putations. Many programs may not need distribution at all.

In some cases, however, automatic distribution is cru-
cial. New technologies such as pervasive computing require
that applications connect from any device, over any net-
work, using any style of interface. Mobile computing re-
quires that mobile code is deployed over heterogeneous net-
works of sometimes resource constrained devices. If there
are not enough resources available to accommodate a given
program on a single computing node, the promises of these
technologies cannot be delivered. In this context, automatic
distribution can help with increased accessibility, resource
sharing, and load balancing.

Another broad class of data intensive applications relies
on networked systems to process their data concurrently.
Such applications range from inherently concurrent appli-
cations like image processing, universe exploration, com-
puter supported cooperative work, toloosely concurrentap-
plications such as fluid mechanics in avionics and marine
structures. In this context, automatic distribution can help
with exploiting concurrency, reducing the execution time,
and increasing scalability.

Our specific technical contributions relative to previous
systems with similar goals are:

• A set of techniques for a novel approach to automatic
program distribution. These techniques are: object de-
pendence graph construction, general graph partition-
ing, automatic communication generation, and auto-
matically distributed program execution.

• An original compiler and runtime infrastructure that
implements all the above techniques to allow flexible
program distribution based on program access pattern,
resource requirements, and resource availability.
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Figure 1. The distributed compiler and run-
time infrastructure.

1.2. Basic Approach

Our compiler and runtime infrastructure is depicted in
Figure 1. This system transforms sequential Java programs
into distributed programs. Moreover, the system attempts to
model the resources needed by the sequential program and
distribute the program based on the resource availability in
a networked system.To this effect, the system performs the
following transformations:

1. The front-end transforms Java bytecode into the in-
termediate representation using Joeq front-end [22].
Joeq provides us with two intermediate representa-
tions: bytecode andquad. The latter is a quadruple
style IR which resembles register-based representa-
tions.

2. The system uses our static analysis framework to ap-

proximate the object dependence graph for a program
and model its resource requirements.

3. The system partitions the object dependence graph us-
ing a Java wrapper of the Metis graph partitioning
tool [14].

4. The system uses bytecode rewriting to insert com-
munication calls for remote dependences in the par-
titioned program. Also, the system uses a bottom-up
rewrite system to generate target code for the vari-
ous platforms making-up the networked configuration.
For better resource utilization, in the future we plan
to use native execution rather than Java Virtual Ma-
chine (JVM) hosted execution on (possibly resource-
constrained) devices.

5. The system monitors the program execution and col-
lects a set of statistics about resource usage. We use
this information to gain insight into static partitioning.
In the future we plan to use this information to per-
form adaptive repartitioning.

The rest of the paper is organized as follows. Section 2
describes the object dependence graph construction. Sec-
tion 3 explains how we use graph partitioning to model re-
sources and split the program into multiple pieces. Section 4
describes in detail our approach to code and communica-
tion generation. Section 5 presents the implementation of
a runtime system that allows automatic distributed execu-
tion. Section 6 presents the design and implementation of
a mixed instrumentation and sampling profiler that moni-
tors programs during execution. Section 7 discusses an ini-
tial evaluation of the techniques we introduce in this paper.
Section 8 reviews related research and contrasts our effort
from previous approaches similar in goals. Section 9 con-
cludes the paper and underlines future research directions.

2. Dependence Graph Construction

The first transformation our system performs is to cre-
ate the dependence graph of the program. This graph de-
picts the dependences between program objects and serves
as the input for the resource modeling and graph partition-
ing phase. We use a concrete example to illustrate the de-
pendence graph construction.

2.1. An Example

Figure 2 shows an example of a Java program that we
use throughout the paper. In our example, there are two
classes. TheAccount class describes a bank account with
a unique identifier, holder name, checking, savings, and
loan. TheBank class describes a banking institution with
a unique identifier, name, number of customers, and a list
(java.lang.Vector ) of their actual accounts.



public class Account {
}

public class Bank {
protected Bank(String name, int numCustomers, int initialBalance,) {

...;
initializeAccounts(initialBalance);

}
private void initializeAccounts(int initialBalance) {

while (numCustomers) {
...;
Account a = new Account(i, n, s, c);
accounts.add(a);
numCustomers--;

}
}
public void openAccount(Account a) {

accounts.add(a);
}
public boolean withdraw(int customerID, int amount) {

if (...) {
this.getCustomercustomerID).setBalance(

this.getCustomer(customerID).getBalance() - amount);
return true;

} else return false;
}

public static void main(String[] args) {
...;
Bank merchants = new Bank("Merchants", 100, 10000);
Account a4 = new Account(1, "ABC Market", 1000000, 100000, 20000000);
Account a5 = new Account(2, "CDE Outlet", 5000000, 300000, 150000000);
merchants.openAccount(a4);
merchants.openAccount(a5);
...;
Account a = merchants.getCustomer(2);
merchants.withdraw(a.getId(), 900);

}
}

Figure 2. An example of a Java program.

The Bank class initializes a number ofAccount
structures for its clients. On anopenAccount event
an Account reference is passed to theBank ob-
ject and it is added to the existing accounts list. The
Bank.withdraw(...) method reduces the bal-
ance by the amount withdrawn. Themain method cre-
ates instances of a bank and various types of accounts
that are opened and operated on. Our analysis is tar-
geted toward finding these instances and their dependences.

We have implemented an improved version of Spiegel’s
algorithm [20] (for detailed contrast see [2]). We use rapid
type analysis (RTA) to compute the call graph and the pro-
gram types. Then, for each method in the graph we compute
theclass relationsby looking at field access and method call
statements. Ausagerelation between two classes occurs
when one class calls methods or accesses fields of another
class.Exportor import relations occur when new types may
propagate from one class to another through field accesses
or method calls.

Figure 3 shows the class relation graph for our example.
We use the aiSee1 tool for the visualization of the graph in
the Visualising Compiler Graphs (VCG) format. The types
are annotated with theST or DT prefix to indicate static
or instance (dynamic) parts of a class. Theuserelations tell
that some classes occur in the context of other classes and
their occurrence is noted by looking at the method calls,

1 A graph visualization tool from AbsInt. Available from
http://www.absint.com/aisee.html.

Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

Figure 3. The class relation graph visualized
with aiSee tool for vcg format.

Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

Figure 4. The object dependence graph visu-
alized with aiSee tool for vcg format.

field accesses, and allocation statements. Theexportedge
occurs due to the invocation of theopenAccount method
on the dynamicBank class with anAccount class as pa-
rameter. Theimportedge occurs due to thegetCustomer
invocation that returns a result ofAccount type.

Given the class relation graph, and the object set, we
compute the relation between the corresponding objects
(class instances). For each allocation statement, we addref-
erencerelations between the instance of the class where
the allocation takes place and the newly created instance.
We then create new references by matching the initial ob-
ject references against theexportand import relations be-
tween the corresponding classes. We iterate through all ob-
ject triples and propagate references matching against the
type relations until the algorithm reaches a fix point.

Figure 4 shows the object graph for our example. The



edges are labeled bycreate, use, reference. The objects are
prefixed by1 indicating single instances (a* prefix indi-
cates summary instances of zero or more — i.e., created in-
side a control structure). Thereferencerelation is redundant
and only used for intermediate processing. We can safely
abandon it. Thecreaterelation means that an object creates
another object. The creation relation between object pairs is
propagated to discover newusagerelations from the class
relation graph. Therefore, after the propagation, only theus-
agerelation should matter for the partitioning: if an object
a on abstract processorPa usesan objectb on abstract pro-
cessorPb, then communication may be generated. We also
show the partition number within square parentheses for a
two way partitioning transformation. For details on the ac-
tual algorithm and implementation, please refer to our tech-
nical report [2].

3. Graph Partitioning

The next transformation our system performs is the
graph partitioning. As a result, this phase assigns a vir-
tual processor number to each object.

A multi-constraint graph partitioning gives an optimal
partitioning of the object dependence graph such as to min-
imize the cut, and thus communication, and to account for
the resource constraints of each partition.

Finding an optimal multi-way partition for large graphs
is an NP-complete problem (thus, no algorithm that solves
the problem in polynomial time exists). However, many
heuristic-based approaches exist [3, 12]. To our knowledge
the most advanced multilevel partitioning scheme is Hen-
drickson et al.’s [7].

We use Metis’ multi-objective, multi-constraint graph
partitioning algorithms to partition the dependence graph.
We model the resources for the object dependence graph
as follows. Each object in the graph encapsulates data and
computation. The amount of data it encapsulates charac-
terizes the memory usage, while the amount of computa-
tions characterizes the CPU usage. The weight of a node is
a vector that contains memory, CPU, and battery usage for
the creation and usage of an object. An edge between two
objects indicates a potential communication, if the objects
were to reside in two different address spaces. The data that
needs to be transferred between address spaces is the de-
pendence data (i.e., field, method arguments or result). The
weight of an edge is the amount of data that needs to be
transferred due to a dependence.

We use static approximations of resource consumption
to guide the static partitioning. The static approximations
can be imprecise under the assumption that all objects have
equal weights. In the future we plan to use simple heuris-
tics; for example, objects created inside the loops can be
considered “heavier” than single instance objects, etc.

Java:
public class Example
{

int ex ( int b ){
b = 4; // 1
if (b > 2){ // 2

b++; // 3
}
return b; // 4

}
}
Quad:
BB0 (ENTRY) (in: <none>, out: BB2)
BB2 (in: BB0 (ENTRY), out: BB3, BB4)
1 MOVE_I R1 int, IConst: 4
2 IFCMP_I IConst: 4, IConst: 2, LE, BB4
BB3 (in: BB2, out: BB4)
3 ADD_I R1 int, IConst: 4, IConst: 1
BB4 (in: BB2, BB3, out: BB1 (EXIT))
4 RETURN_I R1 int
BB1 (EXIT) (in: BB4, out: <none>)

Figure 5. Turning a Java class into quads.

In our current implementation we have written a Java
wrapper [10] for the Metis graph partitioning tool [14]. The
wrapper implementation (including visualization capabili-
ties) is about 10000 lines of code.

4. Code and Communication Generation

Once each object has been assigned to a virtual proces-
sor, the program can be distributed by mapping virtual pro-
cessors to actual processing units at runtime. There are two
issues related to the distributed execution. First, native exe-
cution in heterogeneous environments requires retargetable
code generation. Second, correct execution requires com-
munication to satisfy the remote dependences.

To address retargetable code generation we use the quad
high-level intermediate representation to generate Abstract
Syntax Trees (AST) and then use bottom-up rewrite system
(BURS) [18] to emit code for a range of architectures (cur-
rently x86 and StrongARM).

To address communication generation, we use the depen-
dence and partitioning information to classify objects aslo-
cal anddependent. Local objects have no dependences on
objects in different address spaces. Thus, they are treated
as normal objects and no communication is generated for
those. Dependent objects have dependences across address
spaces and thus, messages are inserted to resolve these de-
pendences.

4.1. Retargetable Code Generation

The input for this phase is the quad intermediate repre-
sentation. The result is a generated set of compilers for vari-
ous target machines. An example of the quad format is listed
as Figure 5, along with the Java class that was used to gen-
erate the code.
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Abstract Syntax Tree. Once the quad source is estab-
lished, the program is then turned into an Abstract Syn-
tax Tree to act as the code generator front-end. The AST
is structured such that each instruction acts as a root node,
with instruction parameters represented as child leaves. The
tree generator used is called ANTLR [16], and is a gram-
mar parser similar to Yacc. A visual representation of this
tree can be seen as Figure 6.

Because of the inherent simplicity in the quad format,
it is feasible that a simple, linear parser be written from
scratch and a code generator built on top of it. Though that
approach may perform faster and can be more specialized to
this task, using the tree allows extensibility. This would al-
low the code generator to be used with any intermediate rep-
resentation or source language as creating a tree allows us
to completely abstract the source.

Bottom-Up Rewrite Generation. After obtaining the
tree representation of the source, the remaining work is
done through the back-end and is handled through a method
called Bottom-Up Rewrite Machine Generation, or BURM.
This does two passes of the incoming AST: an initial pass
to find a minimum-cost traversal, followed by a second pass
that emits code based on the instructions represented in
each node. The specific machine generator is called JBurg, a
Java-based BURG (Bottom-Up Rewrite Generator) [5] that
differs from other BURM implementations in that it tra-
verses the tree employing dynamic programming pattern
matching to satisfy goals. Two examples of machine code
emitted by the BURG are as Figure 7.

4.2. Communication Generation

To generate communication, we generate partitions off-
line for 1, 2, ... nodes. This is a form of off-line rather than
runtime specialization.

Each node in the object graph has a unique identifier that
contains a virtual processor number. Communication is in-
serted only for dependent objects. That is, for each depen-
dence relationto a remote object two calls are generated:
a sendcall that packs the access type and associated data,
and areceivecall that fetches the response. For each de-
pendence relationfroma remote object, two calls are gener-
ated: areceivecall that processes the access type and asso-
ciated data and asendcall that sends the results of the ac-
cess back.

x86:
mov eax, 4 ; 1
cmp 4, 2 ; 2a
jle BB4 ; 2b
mov eax, 4 ; 3a
add eax, 4 ; 3b

BB4:
ret eax ; 4

StrongARM:
mov R1, #4 ; 1
cmp #4, #2 ; 2a
ble BB4 ; 2b
add R1, 4, 4 ; 3

.BB4
mov PC, R14 ; 4

Figure 7. Machine code for two separate ar-
chitectures

Original byte-code:
13: aload //load Account object
14: invokevirtual Account.getSavings:()

Transformed byte-code:
13: aload //load DependentObject object
14: ldc INVOKE_METHOD_HASRETURN (int) //access type
16: ldc "getSavings" //load method name
18: aconst_null //no method argument for getSavings()
19: invokevirtual DependentObject.access
22: checkcast Integer //cast to return type
25: invokevirtual Integer.intValue //get primitive value

Figure 8. The transformation for method invo-
cation account.getSavings(); .

The dependences handled by our current implementation
are object accesses, including field accesses, and method in-
vocations. For each dependent object that is referred from
remote, there is a correspondingDependentObject
that performs Message Passing Interface (MPI) com-
munication with the home node of the referring object.
Distributed dependences are therefore transformed to ac-
cesses toDependentObject instances.

Figure 8 illustrates the original and trans-
formed bytecode snippets for method invocation
account.getSavings() . The transformation for
method invocations performs three tasks: prepare the argu-
ments for theDependentObject access, prepare the ar-
guments (in aLinkedList ) for the original method call,
and cast the return value (Object type) to the appropri-
ate class type or primitive value. The transformation for
field accesses are similar.

The remote instantiation of a dependent class is trans-
lated to an instantiation of aDependentObject , which
in turn will communicate via MPI messages to the home
node of the dependent object. The home node will then cre-
ate the object. Figure 9 demonstrates the transformation of
new Account(i, n, s, c) . The information passed
to the MPI message for distributed instantiation and com-



Original byte-code:
35: new Account
38: dup
39: iload_2 //i
40: aload_3 //n
41: iload 4 //s
43: iload 5 //c
45: invokespecial Account."<init>"

Transformed bytecode:
35: new DependentObject
38: dup
39: iload_2 //i
40: aload_3 //n
41: iload 4 //s
43: iload 5 //c
//....
// prepare the constructor arguments
//....
105: ldc 0 (int) //location of Account, Node0
107: ldc "Account" (String)
109: aload 6 //constructor arguments in a list
111: invokespecial DependentObject."<init>"

Figure 9. The transformation for new
Account(i, n, s, c);

prises of the class name and the arguments to the class con-
structor.

The quality of communication generation is directly in-
fluenced by the quality of dependence analysis. Our anal-
ysis is type-based and thus, not very precise. More pre-
cise dependence information makes use of points-to infor-
mation [19] in the context of speculative multithreading.
In addition, there are several communication optimization
techniques that can be applied to optimize communication
generation: message aggregation, hoisting communication
out of the loop, asynchronous communication, overlapping
communication and computation, data replication, and early
prefetch. Many of these techniques cannot be used with re-
quest/response communication style like RPC or RMI. In
contrast, we use message exchange communication to re-
veal more optimization opportunities.

5. Distributed Execution

The distributed target code partitions are executed within
the MPI enhanced runtime environment. Currently we use
JVM hosted execution rather than native execution. Even
though the retargetable code generation component is fully
implemented, it was easier to use normal JVM since our
current experiments are conducted on resource-rich x86
platforms. Also, the use of JVM does not affect our current
distributed execution evaluation (speed-up measurements).

In our current implementation, on each node there
are three supporting services: theMPI service, the
ExecutionStarter service, and the Message
Exchange service. Figure 10 depicts this organiza-
tion of the runtime services for distributed execution. The
MPI service sets up the necessary MPI working environ-

Message
Exchange

Service

Starter

Message
Exchange

Service

Starter

Message
Exchange

Service

Starter

Code Partition Code Partition Code Partition

MPI Service MPI Service MPI Service

User

Figure 10. The organization of runtime ser-
vices for distributed execution.

ment — such as groups, communicators, and the commu-
nication context.

TheExecution Starter service starts the applica-
tion by invoking themain() method of the application
class. Only one copy ofExecution Starter needs to
be active on the processor node in the distributed execution
environment where the user initiates the application.

The core of this MPI-aware runtime support is
the Message Exchange service. This service pro-
cesses all thesend and receive MPI communica-
tion generated from the object dependence information.
The Message Exchange service uses two support-
ing data structures. One is theDependentObject
and the other is the exchangedMessage . The run-
time uses theDependentObject (implemented by a
Java class) to indicate an object that has dependence rela-
tions to another partition.

Each dependent object contains the following informa-
tion: its class type, the identifier of the partition (node) that
hosts the object, and its unique identifier in that partition
(node). A message (packed in aMessage structure) ex-
changed between two dependent objects across two nodes
contains the object identifier of the receiver of the commu-
nication and the relevant dependence data. TheMessage
Exchange service passes objects between nodes using a
streamed format.

We currently identify two types of messages:NEWand
DEPENDENCEfor object instantiation and data depen-
dence. We are in the process of defining more precise
dependence relations (e.g.,read after write), and discrimi-
nating further between messages.

6. Profiler

We have built a profiler that collects statistics indicating
the resource consumption of a program during runtime.



The profiler is built on top of the Joeq compiler and vir-
tual machine. The profiler works either through instrumen-
tation or sampling. Some of the metrics can be implemented
using either technique. In these cases, the instrumentation is
useful as a baseline for comparison of the accuracy of the
sampling. There are four basic categories of runtime appli-
cation behavior we are interested in: CPU, memory, bat-
tery, and communication (i.e., network) usage. To measure
these four basic categories, we have currently implemented
six metrics: method duration, method frequency, hot meth-
ods, hot paths, memory allocation, and dynamic call graph.

The method duration metric measures the amount of
time each method took to execute. The metric was origi-
nally implemented by overloading the method invocation
process of the built-in native2 interpreter. The time of entry
and exit of each method (both system-level and user-level)
are recorded in a profiling class. Unfortunately, due to prob-
lems within Joeq itself, this metric on our test benchmarks
had to be measured with Java source level instrumentation.
See Section 7.3 for details.

Themethod frequencymetric measures how often each
method is invoked. This metric can also be used as a less ex-
pensive substitute for the method duration metric. A counter
is associated with each method that kept track of the num-
ber of invocations. However, also like the method duration
metric, source level instrumentation had to be performed in-
stead.

Thehot methodsmetric minimizes the overhead of the
previous metric by using sampling. For each native thread
Joeq spawns it also attaches a separate native interrupter
thread. The interrupter thread’s main task is to signal the
thread queue when to switch threads. This provides a con-
venient approach to sampling; simply pass control from the
interrupter thread to the profiler at each scheduling time
quantum. The profiler then obtains the currently executing
method by reading the call stack of the thread and record-
ing the top stack frame.

The hot paths metric goes a level above the hot meth-
ods metric in its scope and measures the hottest execution
paths through the application. We extend the hot method
technique, and we sample the entire call stack instead of
sampling only the top stack frame.

The memory allocation metric is implemented by di-
rectly modifying the internal Java virtual machine system
code of Joeq. By overloading some of the methods that im-
plement memory allocation, we can estimate the memory
profile of the application without performing instrumen-
tation. Unfortunately, this metric is currently only a very
rough approximation, but we are confident that much bet-
ter accuracy will be achieved in the near future.

2 ”Native” in context of Joeq means it bootstraps itself into a fully func-
tional JVM without the need for a host JVM to support it.

benchmark size CRG ODG
#C #M KB #N #E EC #N #E EC

create* 14 28 13 17 6 2 210 632 82
method* 6 35 10 12 10 2 9 32 2
crypt* 6 45 12 13 13 3 11 33 1
heapsort* 6 42 10 13 13 3 11 33 2
moldyn* 8 48 17 12 15 2 9 32 2
search* 9 57 17 14 23 3 6 20 3
cmprss** 38 295 160 36 42 1 32 107 2
db** 32 299 155 32 26 2 49 164 8

* Java Grande benchmarks: JGFCreateBench and JGFMethodBench (section 1),
JGFCryptBench and JGFHeapSortBench (section 2), JGFMolDynBench and
JGFSearchBench (section 3).

** SPEC JVM98 benchmarks:201 compress, and209 db.

Table 1. The size of the benchmarks (number
of classes, methods, and KB) and the sizes of
the resulting graphs (the number of nodes,
edges, and the edgecut for both CRG and
ODG).

Thedynamic call graph metric shows the methods that
actually got called in a specific application instance. It was
measured using sampling. It also makes use of similar data
as the hot paths metric, but processes the data in a different
manner to actually construct the dynamic call graph.

7. Evaluation

We have implemented a functional infrastructure proto-
type that realizes the components presented in the above
sections. We evaluate the functionality and the performance
of our prototype with a set of benchmarks from Java Grande
benchmark suite and SPEC JVM98 (see Table 1). In our
experiments the networked configuration includes a ser-
vice node, 1.7GHz Pentium III machine (512MB RAM,
SuSE9.1), and another computation node, a 800MHz Pen-
tium III (384MB RAM, Redhat 9.0). Both nodes run JDK
1.4. The two nodes are connected via 100M Ethernet. At the
time of this publication we did not have access to other net-
worked configurations and we only experimented with the
few computers we had access to. However, in the future, we
plan to set up a network consisting of multiple nodes with
significant differences in resources and configurations.

7.1. Dependence Graph Construction

Table 1 shows the sizes of the original benchmarks as
well as the resulting class relation graph (CRG) and object
dependence graph (ODG) for each benchmark. Theedge-
cut is the number of edges that straddle partitions.Currently
we use the class relation graph partitioning to distribute the
program.



benchmark construct partition rewrite
CRG ODG TRG ODG

create 2043 3056 7 12 271
method 1704 53 7 6 202
crypt 1715 40 7 7 209

heapsort 1615 54 6 7 193
moldyn 1903 114 6 6 215
search 1868 49 7 7 204

compress 2305 100 6 7 285
db 2434 99 10 7 280

Table 2. The execution time breakdown in
code distribution. The columns indicate the
construction time, the partitioning time, and
the bytecode rewriting time

The execution times for graph construction and distribu-
tion transformation are shown in Table 2, in milliseconds.
We can see that the static analysis of the class relations is in
the order of seconds. This is because the process to extract
high-level dependence information from the low-level byte-
code format is computation and time consuming. However
since this process only happens once at compiler-time, it is
not as crucial as the other phases in the dynamic repartition-
ing process — ODG construction, partitioning, and code
rewriting. In these latter phases, only partitioning has to
be completely re-executed in each adaptive iteration. ODG
construction and code rewriting can be both adjusted incre-
mentally. Since the partition time is only about 10ms, we
believe that the results are promising for our future plans of
incorporating adaptive repartitioning. Also,Createbench-
mark has an unusual long ODG construction time. This is
because it creates a large amount of objects which substan-
tially complicate the object graph.

7.2. Distributed Execution

To evaluate the performance of the distributed execu-
tion runtime, we compare the distributed execution time
of the transformed benchmarks with the execution time of
the original sequential benchmarks on the 800MHz Pen-
tium III machine. The execution speedup is depicted in Fig-
ure 11. The distributed execution shows comparable or im-
proved performance (79.2% to 175.2%) with the original
sequential execution. The results are promising, since with-
out any further optimization the distributed execution re-
sults in very little overhead (inMethodandCompress), or
speed-up. Since we currently use a suboptimal naive parti-
tioning, it is expected that further performance gain will be
achieved if optimization is introduced to the distribution in-
frastructure in our future work.

Figure 11. Performance comparison of cen-
tralized and distributed executions.

7.3. Profiling

We evaluate the profiler for a a subset of the Java Grande
Forums benchmarks. For the baseline measurements, Joeq
runs each of the benchmarks with all the profiling code
compiled in, but not enabled. Then each of the profilers
is enabled in turn. The tests were conducted on an AMD
Athlon XP 2000+ (1.67 GHz) with 512 MB RAM running
Windows XP. In each of the tests, Joeq was allocated a max-
imum heap-size of 1024 MB.

Table 3 shows the total execution times for each of the
benchmarks and profilers. The average overhead for all the
profilers is 21.94%. A general trend is that metrics which
were measured with instrumentation overall incurred no-
tably higher overhead than did the others, which used either
sampling or modification of the JVM system code. The hot
paths, dynamic call graph, and memory usage metrics all
incurred about equal levels of overhead, approximately 14-
20%. The most impressive results came from the hot meth-
ods metric, which at approximately 4% is a very good re-
sult.

8. Related Work

There are two types of automatic distribution compilers
or virtual machines available: automatic distribution to ex-
ploit data parallelism in scientific programs and automatic
partitioning of Java programs to relieve resources on con-
strained devices.

Automatic Distribution of Data Parallel Programs.
Automatic parallelization is one research area that has in-
vestigated the partitioning problem mainly for scientific
programs typically targeting a significant reduction in CPU
or memory consumption [8, 13, 1, 6, 11]. There are two
main differences between partitioning for scientific appli-
cations and our work. First, most of the previous work fo-
cuses on array partitioning, or loop iteration partitioning for



Test/Metric Baseline Hot
Paths

Dynamic
Call
Graph

Hot
Meth-
ods

Method
Du-
ra-
tion

Method
Fre-
quency

Memory
Us-
age

CreateBench
(int [])

4.406 5.125 5.375 5.468 4.734 5.937 9.718

CreateBench
(long[])

18.250 28.046 28.640 19.281 25.140 31.062 35.000

CreateBench
(float[])

4.468 6.437 5.906 4.265 5.015 4.659 6.015

CreateBench
(Object[])

2.156 2.421 2.468 2.328 2.296 2.203 2.281

CreateBench
(Custom[])

10.718 12.687 12.500 11.484 11.875 11.234 51.406

MethodBench 196.187 212.140 222.359 202.281 323.437 248.156 198.937
FFTA 32.187 37.609 40.765 33.812 35.781 36.546 34.312
HeapSortA 3.906 4.296 4.968 4.281 17.297 14.328 3.968
MolDynA 48.234 53.062 57.390 50.234 51.375 51.750 50.125
MonteCarloA 48.734 59.859 58.890 51.015 75.194 60.234 49.671
Total: 369.734 421.682 439.261 384.449 552.144 466.109 441.433
Overhead: 0.00% 14.05% 18.80% 3.98 % 49.34% 26.07% 19.39%

Table 3. The profiler evaluation. Each row is the individual benchmark, while each column is the name
of the profiler enabled. The last row is the total time it took to execute all the benchmarks. The times
are given in seconds. The baseline column is the execution times with all the profiling code com-
piled in but not enabled.

scientific programs. We address general program distribu-
tion, where all the objects in a program are of interest. Sec-
ond, the main objective for partitioning in scientific pro-
grams is to speedup execution, either on distributed or on
shared memory machines. Our design choices are motivated
by the ability to model multiple resources and study their in-
teraction. Then, the general distribution can be specialized
at runtime depending on resource priorities and actual envi-
ronment.

Automatic Distribution of Java Programs. Java-
Party [17] extends Java withremote objects. The objec-
tive is to provide location transparency in a distributed
memory environment. In contrast, we achieve the trans-
parency effect without extending Java syntax. However, we
do not give the user any control over distribution.

Messer et al.’s approach, though entirely dynamic, has
an objective that more closely matches our own [15]. The
goal is to transparently off-load services to relieve mem-
ory and processing constraints on resource-constrained de-
vices. The main difference is the handling of object refer-
ences. In this approach each JVM maps all other JVMs ref-
erences, and thus it results in areplicate allstrategy. Our ap-
proach is partly static, and it considers just some of the in-
teractions between objects (cross processor).

Another approach, similar to the distributed shared mem-
ory paradigm, is to implement a distributed JVM as global
object space [4]. We achieve the same transparency effect
at hopefully lower cost, since we distinguish between lo-
cal and remote accesses.

J-orchestra [21] transforms Java bytecode into dis-
tributed Java applications. This is also an abstract shared

memory implementation. The communication is syn-
chronous only — i.e., RMI. To exploit asynchronous com-
munication, we use automatically generated point-to-point
messages.

Pangaea [20] is a system that can distribute Java pro-
grams using arbitrary middleware (Java RMI, CORBA) to
invoke objects remotely. The system is based on the origi-
nal algorithm by Spiegel which was the basis for our own
extended algorithm [2]. Pangaea’s input is a centralized
Java source-code program. The result is a distributed pro-
gram underlying the synchronous remote method invoca-
tion communication paradigm. Our approach starts from
Java bytecode and targets a flexible distribution model (i.e.,
allows the exploitation of concurrency and asynchronous
communication) in a program.

Coign [9] is also a system that strives to automatically
partition binary programs (built from COM components)
for optimal execution. Coign is designed to handle 2-way
partitioning only (between two nodes) for client-server dis-
tributions. Also, the distribution is fully dynamic, based on
profiling history. We combine static analysis with off-line
distributions in a general, multi-way partitioning.

9. Conclusion

This paper presented the design and implementation of a
research compiler and runtime infrastructure for automatic
program distribution. While not all programs can benefit
from automatic distribution, we believe that it is important
to be able to model the resources of a program and study
the effect of distribution on program behavior with respect



to resource consumption. The motivating factor to our de-
sign was flexibility and modularity. Thus, we expect each
of the techniques we presented to evolve as more experi-
ments are conducted.

Our design is based on two key ideas: find the depen-
dences between the objects in a program and use this infor-
mation to automatically generate communication. We have
shown how we cast the resource modeling and program dis-
tribution problem into an optimal graph partitioning prob-
lem. We model the resources as weights on the dependence
graph and then experiment with multiple resource priori-
ties and constraints. We have presented the code generation
phase as two separate parts: platform independent code gen-
eration and communication generation.

We have also described a profiler system that allows us to
collect information about the program behavior and eventu-
ally, be able to redistribute the program according to the ac-
tual access patterns and resource requirements. Our present
infrastructure only handles static partitioning. While dy-
namic repartitioning is the goal of our next design iteration,
it does not influence the design of the infrastructure pre-
sented in this paper.

Finally, we have presented results on each of the tech-
niques that we have introduced. The results indicate that
partitioning takes little time and the computed dependence
graphs are within manageable sizes. We have also shown
that without any further tuning, the distributed execution re-
sults in either a very small overhead or a speed-up. Finally,
we have evaluated our profiler system in terms of the in-
curred overhead as well as collected data.
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